Tag Archives: Oyster mushroom

Mycoremediation: Testing Results In The Field

 

Jordan Weiss

Jordan Weiss demonstrating the mixing of myceliated Oyster mushroom straw at Dharma Rain Zen Center–photo by PlanGreen

August 6, 2015

When Jordan Weiss set out to use mushrooms to help clean up the soils and filter the water at the former landfill/brownfield site purchased by the Dharma Rain Zen Center (DRZC), he did so based upon the mycoremediation research of others such as Paul Stamets and his team at Fungi Perfecti.  He didn’t set up the effort as a research project.  He didn’t have funders to answer to as he volunteered his time and even many of the materials. He taught workshops that brought in the  volunteer labor from the Zen Center, the Oregon Mycological  Society and neighbors and friends.

Now, to take the project to the next level as a mycoremediation model for the Portland area, Jordan and others involved with the project, like myself, would like funding.  Funders always want  data–not just university lab data or even other people’s field data, but data from the project they are asked to fund.  I’m working with Jordan to figure out what baseline data is out there re: water quality and soils and what more data we need to collect to prove that mushrooms are removing toxins on this site and can do so throughout the Portland area.

DRZCSitePlanMap

This plan shows the rain garden (9) to the west of the meditation hall and the food garden (3) to the south–from Planting Zen, DRZC

 

Clean Soil to Garden Boxes

Soil testing revealed high levels of PAHs in the underlying soil so clean soil is being delivered for garden boxes–photo by PlanGreen

The Phase I Environmental Site Assessment for the DRZC site is of little help with regard to pollutants in water or stormwater. Essentially, its conclusion was: No analytical testing of shallow groundwater has been reported to ODEQ.  In the Phase II ESA, eight soil samples were tested in the area where the food garden is now.  High levels of PAHs were found in this soil, causing DRZC to build boxes and import clean soil for vegetable gardening.  The area where the raingarden is does not seem to have been tested.

Garden w/Berms

There are large berms (barely visible in the photo) at the north end of the garden where mycobags were placed on July 1, 2015–photo by PlanGreen

The best place to do future myco-remediation installations may be in the food garden area at the edges of the boxes since that soil had already been tested prior to any mycoremediation efforts, . After the mushrooms get established, DRZC and its partners could continue to test  the underlying soils for levels of PAHs.  The hypothesis is that the mushrooms and their mycelia will reduce or eliminate the PAHs.

PAHs (such as acenaphthylene’s, anthracene, benzo(g,h,i)perylene, fluorine, phenanthrene and pyrene) are listed by the EPA as possible carcinogens and maximum allowable standards are set for them.

BES Water Quality Chart

BES Water Quality Chart from Appendix A of 2008 Stormwater Management Facility Monitoring Report

We will want to do stormwater testing too.  The Portland Bureau of Environmental Services (BES) Stormwater Management Facility Monitoring Reports for both 2008 and 2010 tell us what water quality data BES monitors for in its stormwater facilities. From the chart in the Appendix of the 2008 report, we see that they monitor for oil,  grease, E. coli, metals, total phosphorous and orthophosphate phosphorous, ammonia-nitrogen and nitrate nitrogen in water.

Here’s what they test in the sediments:

BES Sediment Testing Chart

HCID/TPH is a screen to determine the presence and type of petroleum products in the soil

That HCID/TPH is a way to screen for PAHs and other petroleum products in the soil.  We do know that BES also does separate soil sampling. Some of the latest soil sampling data¹ shows that E-coli and heavy oil levels were higher than the background soil sample sites located nearby–but outside of the stormwater facilities. Metal and PAH levels found in stormwater facilities were generally similar to those found in background sample soils.  While these results show that soils in green street stormwater facilities (bioswales, raingardens) are likely taking up E-coli and heavy oil from runoff that would otherwise go down a storm drain, we hope to show that with the use of mushrooms, soil results could be cleaner than the background samples in all categories tested: E-coli, heavy oil, metals and PAHs.

Raingarden Work Party

Since toxins in surface water was not found t be a problem, the largest source of future pollutants may be from runoff from the parking area in the background of this photo–by PlanGreen

 

Since the only water sampling that revealed toxins at DRZC was the seep in the northeast corner of the site², our approach for monitoring the raingarden could start with the first rains of Fall 2015.  We would largely be monitoring for pollutants from the parking area west of the raingarden. Parking lots are well-known for contaminating stormwater with PAHs when it rains.

Jared Kinnear

Jared Kinnear, Recycled Water Program Manager at Clean Water Services–photo by PlanGreen

The Portland area is fortunate to have a second mycoremediation project underway in our region. In July 2015, I set up a meeting with Clean Water Services  Jared Kinnear and Pacific University toxicology professor Deke Gunderson to learn from their project to test mushrooms for cleaning street sweepings.  They hope to get the street sweepings–what appears to be the compost I buy in bags at Ace Hardware– to the point that it is judged safe for farmers’ fields.  They set up their project in conjunction with Fungi Perfecti which provided both the protocols and the mycelium inoculated wood chips for the research.

The project has evolved from what was originally conceived.  Because of time and labor constraints and the preliminary results, the project was modified from the original one that would have tested five species of fungi to just testing Stropharia rugoso annulata (King stropharia) and Pleurotus ostreatus (Oyster mushroom).  Then it was narrowed down again when the researchers found that the oyster mycelium stayed on the wood chips rather than spreading throughout the mixture of wood chips and street sweepings.

King Stropharia with a small portion of its mycelium

King Stropharia with a small portion of its mycelium growing at DRZC–photo by PlanGreen

So they are now testing the ability of King stropharia mycelium to eliminate polycyclic aromatic hydrocarbons (PAHs) or at least reduce them to a level that they are safe to spread on farm fields.  The levels of PAHs are tested on a chromatograph at Pacific University. Since once the inoculated wood chips were added to the street sweepings, the levels of PAHs were so low that they were difficult to fully measure, the team decided to spike the experimental samples with PAHs in order to measure the effectiveness of the mushrooms.

Hailey Jongeward and Prof. Deke Gunderson

Hailey Jongeward and Professor Deke Gunderson in discussion over a box of street sweeping material–photo by PlanGreen

The EPA has recognized 7 PAHs as priority chemicals due to their persistence in the environment.³ The most common way to be exposed is by breathing contaminated air but exposure can also come from  eating contaminated food. While we were there we met one of Dr. Gunderson’s students ,Hailey Jongeward, who has since shared with me her PowerPoint report on the project.

“Of the 7 priority chemicals we found traces of all 7 in the starting material, increasing the importance of this project” she wrote.  Those chemicals are: acenaphthylene’s, anthracene, benzo(g,h,i)perylene, fluorine, phenanthrene and pyrene.

Street Sweepings box

This box of street sweepings is being colonized by mycelia that were added as spores on wood chips–photo by Hailey Jongeward

Street Sweeping Box 2

This box has greater colonization of mycelium throughout–photo by Hailey Jongeward

Hailey also shared the photos of the subject material to the right.  Boxes get different ratios of wood chips to spores so that may account for the difference in the two boxes.  Both show that the mycelium is spreading, but the lower one more than the upper one.  Hailey also told me she is working in partnership with fellow Pacific University students Jake Prevou and Natalie Kimura.

I believe that the monitoring of the Dharma Rain Zen Center project needs to take on some similar elements as the Clean Water Services project and monitor soils for reduction of PAHs.  It would also be useful to test the water flowing into and back out of the raingarden, but that may prove more difficult because it was not designed for doing such testing.  Our best bet may be one identified in the Phase II ESA: “a location south of the seep had water discharge from piping, which was traced to a stormwater surface drainage feature.”

It is exciting to be part of the initiation of a technology–or rather a protocol for utilizing an ecosystem service from the seen and unseen mysteries of the natural world.  As we enter an era of climate change, such services will become more and more critical for adapting to changes, mitigating the impacts and healing our past wounds to the earth.  I want my business, PlanGreen, to be at the forefront of utilizing the services that nature provides for free.

Please see my previous four posts on mycoremediation on http://plangreen.net/blog/.  You may want to FOLLOW this site for the latest news. And do post your comments and questions below.

UPDATE, Sept. 21, 2015 

Dharma Rain Zen Center started an Indiiegogo campaign http://igg.me/at/PlantingZen/x on Sept. 21, 2015 that allows you to contribute to their restoration and community building work.  Your dollars will be matched dollar for dollar.  I hope you will help if you can!

________________________________________

¹Bureau of Environmental Services • City of Portland 2010 Stormwater Management Facility Monitoring Report

²Levels of arsenic slightly higher than allowed for drinking water standards was found in the northeast corner seep.

³See fact sheet on PAHs from the EPA Office of Solid Waste at http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/pahs.pdf

King Stropharia w/mycelium

Mycoremediation: Dharma Rain Zen Center – Part 1

UPDATE, Sept. 21, 2015 

Dharma Rain Zen Center started an Indiiegogo campaign http://igg.me/at/PlantingZen/x on Sept. 21, 2015 that allows you to contribute to their restoration work.  Your dollars will be matched dollar for dollar.  I hope you will help if you can!

May 6, 2015, Portland, OR – updated May 18, 2015

It would be useful to read my Jan 2014 Mycoremediation: Cleaning Soils and Water along the Willamette River! blog in conjunction with this blog.

I was once quite active in the Oregon Mycological Society, but the need to be more focused on my profession of urban planning saw me let my membership lapse.  I recently renewed it and, to my delight, I’ve discovered a new wave of young members who share my interest in mycoremediation–using mushrooms to clean soils and water.

Dharma Rain Zen Center Mycoremediation Biobags

Dharma Rain Zen Center Mycoremediation Biobags

One OMS member,  Jordan Weiss, recently lead a workshop at the Dharma Rain Zen Center in NE Portland.  In the 2.5 years that this Buddhist group has owned this 14 acre former landfill, they have made a remarkable start to its ecological restoration as evidenced by the dried Himalayan blackberry canes lining the ravine that they are now planting in native plants and trees–and in mushrooms.

Turkey Tail, a whte rot fungus, decomposing a fallen log in forest

Turkey Tail, a whte rot fungus, decomposing a fallen log in a forest in Astoria, Oregon. It leaves the log feeling like a wet sponge ready to be wrung out.

Jordan gave a bit of a lesson in mycology withan emphasis on white rot fungi because they are such fast soil-builders and because they are particularly effective in breaking down aromatic pollutants (toxic components of petroleum), as well as chlorinated compounds (certain persistent pesticides).  A number of species fall into the category of white rot fungi, including three that we dealt with at the workshop:  Oyster mushrooms (Pleurotus ostreatus) and Turkey tails (Trametes versicolor) and King Stropharia (Stropharia rugoso-annualata).

 

The below ground part of some mushrooms–the mycelia–have been shown to consume chemical toxins such as PAHs and bacteria such as E-coli.  Of the eight species of mushroom Paul Stamets team tested in an EPA funded study, “one clearly demonstrated resilience to harsh environmental conditions and a second showed promising characteristics. These species may therefore be considered as technically feasible for stormwater treatment applications. “

The below ground filaments (mycelia) of King Stropharia form a thick white net that filters pollutants and consumes them

The below ground filaments (mycelia) of King Stropharia form a thick white net that filters pollutants and consumes them

The most resilient species referred to in Stamets team’s study is King Stropharia (aka Garden giant).  Its mycelia form a thick web that would filter stormwater in the range of 0.07 to 0.10 cm/sec—roughly equivalent to medium grain sand.  So, the Stamets team judged it to be an appropriate filter media for meeting EPA specifications for stormwater management.  Workshop participants found King Stropharia growing along the west-facing hillside of the ravine at the Zen Center where  naturalized spawn on wood chips in a burlap sack was installed two years ago and fruited this spring.  After advocating mycoremediation with the City of Portland for over a year, it was great to see some land stewards actually doing it!

The workshop team then moved on to innoculating cottonwood logs with two species of white rot fungus–Turkey Tail and Oyster (but just one species per log).  This consisted of drilling some quarter-sized holes to a depth of about 0.7 inch, then scooping some mycelia that had been growing on cardboard into the holes and closing it off with wheat paste and a patch.  Jordan said that a best practice is to use inoculated sawdust and/or plug-spawn–but we were making do with what we had.

Drilling holes in cottonwood logs to inoculate them with Turkey Tail and Oyster fungi.

Drilling holes in cottonwood logs to inoculate them with Turkey Tail and Oyster fungi.

In his article, “The Petroleum Problem”,  Paul Stamets envisions the future of mycoremediation in Mycological Response Teams. These teams would consist of knowledgeable and trained people who would use mycoremediation techniques to recycle and rebuild healthy soil in the area. [1]

Jordan cautions that “fungi is a powerful tool in the remediators tool kit, but these and other nature-based technologies will not work if frivolously applied.”  He encourages us to familiarize ourselves with the ecological role fungi have in their natural environment.  I try to teach about such roles every time we see fungi on the Sierra Club outings that I lead.

Oyster mushroom on rotting log in Forest Park--close to NW Industrial District

Oyster mushroom on rotting log in Forest Park–close to NW Industrial District

In the Sttamets’ teams study, the second most successful species found to take up storm water pollutants with some vigor is the Oyster mushroom (Pleurotus sp.).  They grow in some abundance in nearby Forest Park–even in the winter with a hint of snow on the ground when only the toughest are out: English ivy, Swordfern and Douglas fir.  (Yes, I pulled that piece of invasive English ivy immediately after taking its picture!)

 

Oyster mycelium inoculated straw.

Oyster mycelium inoculated straw.

A Portland-based edible mushroom business produces Oyster mycelia inoculated straw as a by-product of its main business. The three recent college graduates who started this business have expressed interest in having their by-product used  in mycoremediation. Their straw is already becoming popular with gardeners and farmers and an important source of income for the business.

Along with Jordan Weiss, I am adding Mycoremediation to what PlanGreen offers.  I plan to work with Jordan’s Mushrooms and other businesses in the Portland area to offer a full range of mycoremediation services from design and planning to installation and maintenance.  We might start with Portland’s NW Industrial District. where students in the Masters in Urban and Regional Planning program at Portland State University are just now completing their project “Getting Green to Work in the NW Industrial District.”  We’re lucky that in the Portland area  green streets with bioretention facilities, green or eco-roofs, green walls, permeable pavement, etc. can now be considered  almost commonplace. This is the green infrastructure the students referred to when I attended their open house in April.  Right now, almost none of our built green infrastructure has mushrooms and their mycelia growing in it.  My team is proposing to change that.  If you have a mycology-based business in the Portland, Oregon area and want to be part of that effort, write me, Mary Vogel, at mary at plangreen dot net.

1.”The Petroleum Problem”. Fungi Perfecti. 3 June 2010. Retrieved 8 May 2013.